A particle of mass $1 kg$ is subjected to a force which depends on the position as $\vec{F}=-k(x \hat{i}+y \hat{j}) kgms ^{-2}$ with $k=1 kgs ^{-2}$. At time $t=0$, the particle's position $\vec{r}=\left(\frac{1}{\sqrt{2}} \hat{i}+\sqrt{2} \hat{j}\right) m$ and its velocity $\vec{v}=\left(-\sqrt{2} \hat{i}+\sqrt{2} \hat{j}+\frac{2}{\pi} \hat{k}\right) m s^{-1}$. Let $v_x$ and $v_y$ denote the $x$ and the $y$ components of the particle's velocity, respectively. Ignore gravity. When $z=0.5 m$, the value of $\left(x v_y-y v_x\right)$ is. . . . . $m^2 s^{-1}$
$3$
$4$
$5$
$6$
A particle of mass $m$ is moving with constant velocity $v$ parallel to the $x$-axis as shown in the figure. Its angular momentum about origin $O$ is ..........
A pendulum consists of a bob of mass $m=0.1 kg$ and a massless inextensible string of length $L=1.0 m$. It is suspended from a fixed point at height $H=0.9 m$ above a frictionless horizontal floor. Initially, the bob of the pendulum is lying on the floor at rest vertically below the point of suspension. A horizontal impulse $P=0.2 kg - m / s$ is imparted to the bob at some instant. After the bob slides for some distance, the string becomes taut and the bob lifts off the floor. The magnitude of the angular momentum of the pendulum about the point of suspension just before the bob lifts off is $J kg - m ^2 / s$. The kinetic energy of the pendulum just after the lift-off is $K$ Joules.
($1$) The value of $J$ is. . . . . .
($2$) The value of $K$ is. . . . .
Give the answers of the questions ($1$) and ($2$)
A particle of mass $m$ moves in the $XY$ plane with a velocity $v$ along the straight line $AB.$ If the angular momentum of the particle with respect to origin $O$ is $L_A$ when it is at $A$ and $L_B$ when it is at $B,$ then
A particle is moving in a circular path of radius $a,$ with a constant velocity $v$ as shown in the figure.The centre of circle is marked by $'C'$. The angular momentum from the origin $O$ can be written as
$A$ time varying force $F = 2t$ is applied on a spool rolling as shown in figure. The angular momentum of the spool at time $t$ about bottommost point is: