- Home
- Standard 11
- Mathematics
4-1.Complex numbers
hard
If the set $R=\{(a, b) ; a+5 b=42, a, b \in \mathbb{N}\}$ has $m$ elements and $\sum_{n=1}^m\left(1-i^{n !}\right)=x+i y$, where $I=\sqrt{-1}$, then the value of $m+x+y$ is :
A
$8$
B
$12$
C
$4$
D
$5$
(JEE MAIN-2024)
Solution
$ a+5 b=42, a, b \in N $
$ a=42-5 b, b=1, a=37 $
$ b=2, a=32 $
$ b=3, a=27 $
$ \vdots $
$ b=8, a=2 $
$ R \text { has "8" elements } \Rightarrow \mathrm{m}=8 $
$ \sum_{n=1}^8\left(1-i^{n !}\right)=x+i y $
$ \text { for } n \geq 4, i^{n !}=1 $
$ \Rightarrow(1-i)+\left(1-i^{2 !}\right)+\left(1-i^{3 !}\right) $
$ =1-I+2+1+1 $
$ =5-I=x+i y $
$ m+x+y=8+5-1=12$
Standard 11
Mathematics