Gujarati
Hindi
10-2.Transmission of Heat
normal

If the temperature of a black body increases from $7\,^oC$ to $287\,^oC$ then the rate of energy radiation increases by

A

${\left( {\frac{{287}}{7}} \right)^4}$

B

$16$

C

$4$

D

$2$

Solution

By Stefan's law, energy radiated per sec by a black body is given by $E = A\sigma T^4$ where $A =$ area of black body, $\sigma  =$ Stefan's constant. For a black body at temperature $T_1, E_1 = A\sigma T_1^4$ , at $T_2, E_2 = A\sigma T^4$ (Since $A,\sigma $ all same)

$\therefore \frac{E_{2}}{E_{1}}=\frac{T_{2}^{4}}{T_{1}^{4}}$

$\Rightarrow \mathrm{E}_{2}=\left(\frac{\mathrm{T}_{2}}{\mathrm{T}_{1}}\right)^{4} \mathrm{E}_{1}$

$\mathrm{T}_{2}=287^{\circ} \mathrm{C}=287+273=560 \mathrm{K},$

$\mathrm{T}_{1}^{2}=7^{\circ} \mathrm{C}=7+273=280 \mathrm{K},$

$\therefore \mathrm{E}_{2}=\left(\frac{560}{280}\right)^{4} \mathrm{E}_{1}=2^{4} \mathrm{E}_{1}=16 \mathrm{E}_{1}$

Rate of energy radiated increases by

$16$ times.

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.