- Home
- Standard 11
- Physics
10-1.Thermometry, Thermal Expansion and Calorimetry
normal
If the volume of a block of metal changes by $0.12\%$ when it is heated thrugh $20\,^oC$, the coefficient of linear expansion (in $^o{C^{ - 1}}$) of the metal is
A
$10^{-5}$
B
$2 \times {10^{ - 5}}$
C
$3 \times {10^{ - 5}}$
D
$5 \times {10^{ - 5}}$
Solution
The co-efficient of cubical expansion $y$ of the metal is given by
$Y=\frac{1}{V} \times \frac{\Delta V}{\Delta T}$
$Y=\frac{\Delta V}{V} \times \frac{1}{\Delta T}$
Here, $\frac{\Delta V}{V}=\frac{0.12}{100}$
$\Delta T=20^{\circ} \mathrm{C}$
$Y=\frac{0.12}{100} \times \frac{1}{20}$
$Y=6 \times\left.10^{-5}\right|^{0} C$
$\therefore$ Co-efficient of linear expansion of the metal is $:-$
$\alpha=\frac{Y}{3}=\frac{6.0 \times 10^{-5}}{3}$
$\alpha=2.0 \times\left.10^{-5}\right|^{0} C$
Standard 11
Physics
Similar Questions
normal