If three unequal non-zero real numbers $a,\;b,\;c$ are in $G.P.$ and $b - c,\;c - a,\;a - b$ are in $H.P.$, then the value of $a + b + c$ is independent of

  • A

    $a$

  • B

    $b$

  • C

    $c$

  • D

    None of these

Similar Questions

Let $n \geq 3$ be an integer. For a permutation $\sigma=\left(a_1, a_2, \ldots, a_n\right)$ of $(1,2, \ldots, n)$ we let $f_\sigma(x)=a_n x^{n-1}+a_{n-1} x^{n-2}+\ldots a_2 x+a_1$. Let $S_\sigma$ be the sum of the roots of $f_\sigma(x)=0$ and let $S$ denote the sum over all permutations $\sigma$ of $(1,2, \ldots, n)$ of the numbers $S_\sigma$. Then,

  • [KVPY 2014]

Let the first three terms $2, p$ and $q$, with $q \neq 2$, of a $G.P.$ be respectively the $7^{\text {th }}, 8^{\text {th }}$ and $13^{\text {th }}$ terms of an $A.P.$ If the $5^{\text {th }}$ term of the $G.P.$ is the $\mathrm{n}^{\text {th }}$ term of the $A.P.$, then $\mathrm{n}$ is equal to

  • [JEE MAIN 2024]

If the ratio of $H.M.$ and $G.M.$ of two quantities is $12:13$, then the ratio of the numbers is

Let $a , b , c$ and $d$ be positive real numbers such that $a+b+c+d=11$. If the maximum value of $a^5 b^3 c^2 d$ is $3750 \beta$, then the value of $\beta$ is

  • [JEE MAIN 2023]

Two sequences $\{ {t_n}\} $ and $\{ {s_n}\} $ are defined by ${t_n} = \log \left( {\frac{{{5^{n + 1}}}}{{{3^{n - 1}}}}} \right)\,,\,\,{s_n} = {\left[ {\log \left( {\frac{5}{3}} \right)} \right]^n}$, then