Gujarati
Hindi
10-1.Circle and System of Circles
normal

If variable point $(x, y)$ satisfies the equation $x^2 + y^2 -8x -6y + 9 = 0$ , then range of $\frac{y}{x}$ is

A

$\left[ { - \frac{7}{{24}},\frac{7}{{24}}} \right]$

B

$\left[ { - \frac{7}{{24}},\infty } \right)$

C

$\left[ {\frac{7}{{24}},\infty } \right)$

D

$\left( { - \infty ,\infty } \right)$

Solution

Let $\mathrm{y}=\mathrm{mx}$ is a tangent

to the circle

$x^{2}+y^{2}-8 x-6 y+9=0$

then length of perpendicular $=$ Radius

$\frac{|4 m-3|}{\sqrt{1+m^{2}}}=4 \Rightarrow(4 m-3)^{2}=16\left(1+m^{2}\right)$

$\Rightarrow 16 \mathrm{m}^{2}+9-24 \mathrm{m}=16+16 \mathrm{m}^{2}$

$\Rightarrow \quad 24 \mathrm{m}=-7$

$m=-\frac{7}{24}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.