- Home
- Standard 11
- Mathematics
A tangent $P T$ is drawn to the circle $x^2+y^2=4$ at the point $P(\sqrt{3}, 1)$. A straight line $L$, perpendicular to $P T$ is a tangent to the circle $(x-3)^2+y^2=1$.
$1.$ A common tangent of the two circles is
$(A)$ $x=4$ $(B)$ $y=2$ $(C)$ $x+\sqrt{3} y=4$ $(D)$ $x+2 \sqrt{2} y=6$
$2.$ A possible equation of $L$ is
$(A)$ $x-\sqrt{3} y=1$ $(B)$ $x+\sqrt{3} y=1$ $(C)$ $x-\sqrt{3} y=-1$ $(D)$ $x+\sqrt{3} y=5$
Give the answer question $1$ and $2.$
$(D,A)$
$(B,D)$
$(B,C)$
$(C,D)$
Solution

$1.$ $Image$
Equation of tangent at $(\sqrt{3}, 1)$
$\sqrt{3} x+y=4$
$Image$
B divides $C _1 C _2$ in $2 : 1$ externally
$\therefore B(6,0)$
Hence let equation of common tangent is
$y-0=m(x-6) $
$m x-y-6 m=0$
length of $\perp^{\text {r }}$ dropped from center $(0,0)=$ radius
$\left|\frac{6 m}{\sqrt{1+m^2}}\right|=2 \Rightarrow m= \pm \frac{1}{2 \sqrt{2}}$
$\therefore$ equation is $x+2 \sqrt{2} y=6$ or $x-2 \sqrt{2} y=6$
$2.$ Equation of $L$ is
$x-y \sqrt{3}+c=0$
length of perpendicular dropped from centre $=$ radius of circle
$\therefore\left|\frac{3+C}{2}\right|=1 \Rightarrow C=-1,-5 $
$\therefore x-\sqrt{3} y=1 \text { or } x-\sqrt{3} y=5$