Gujarati
Hindi
1.Units, Dimensions and Measurement
hard

If we use permittivity $ \varepsilon $, resistance $R$, gravitational constant $G$ and voltage $V$ as fundamental physical quantities, then

A

[angular displacement]  $= \varepsilon^0R^0G^0V^0$ 

B

[Velocity] =  $\varepsilon ^{-1}R^{-1}G^0V^0$

C

[force] = $ \varepsilon ^1R^0G^0V^2$

D

all of the above

Solution

$\epsilon^{-1}=L^{3} M T^{-2} Q^{-2}, R=L^{2} M T^{-1} Q^{-2}, V=M L^{2} T^{-2} Q^{-1}, G=L^{3} M^{-1} T^{-2}$

As the angular displacement ( $\theta$ ) is dimensionless so

[displacement] $=\epsilon^{0} R^{0} G^{0} V^{0}$

Velocity, $[v]=L T^{-1}$

here $\epsilon^{-1} R^{-1} G^{0} V^{0}=L^{3} M T^{-2} Q^{-2} L^{-2} M^{-1} T^{1} Q^{2}=L T^{-1}=[v]$

dipole moment, $[p]=Q L$

here $\epsilon^{1} R^{0} G^{0} V^{1}=\left(L^{-3} M^{-1} T^{2} Q^{2}\right)\left(M L^{2} T^{-2} Q^{-1}\right)=Q L^{-1} \neq[p]$

force, $[f]=\epsilon^{-1} L^{-2} Q^{2}$

here $\epsilon^{1} R^{0} G^{0} V^{2}=\left(L^{-3} M^{-1} T^{2} Q^{2}\right)\left(M^{2} L^{4} T^{-4} Q^{-2}\right)=\left(L^{3} M T^{-2} Q^{-2}\right) L^{-2} Q^{2}=$

$\epsilon^{-1} L^{-2} Q^{2}=[f]$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.