If we use permittivity $ \varepsilon $, resistance $R$, gravitational constant $G$ and voltage $V$ as fundamental physical quantities, then

  • A

    [angular displacement]  $= \varepsilon^0R^0G^0V^0$ 

  • B

    [Velocity] =  $\varepsilon ^{-1}R^{-1}G^0V^0$

  • C

    [force] = $ \varepsilon ^1R^0G^0V^2$

  • D

    all of the above

Similar Questions

The potential energy of a point particle is given by the expression $V(x)=-\alpha x+\beta \sin (x / \gamma)$. A dimensionless combination of the constants $\alpha, \beta$ and $\gamma$ is

  • [KVPY 2012]

Match List $I$ with List $II$

List $I$ List $II$
$A$ Torque  $I$ ${\left[\mathrm{M}^1 \mathrm{~L}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}$
$B$ Magnetic fileld  $II$ $\left[\mathrm{L}^2 \mathrm{~A}^1\right]$
$C$ Magneti moment $III$ ${\left[\mathrm{M}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]}$
$D$ permeability of free  space $IV$ $\left[\mathrm{M}^1 \mathrm{~L}^2 \mathrm{~T}^{-2}\right]$

Choose the correct answer from the options given below :

  • [JEE MAIN 2024]

If velocity $[V],$ time $[T]$ and force $[F]$ are chosen as the base quantities, the dimensions of the mass will be

  • [JEE MAIN 2021]

If dimensions of critical velocity $v_c$ of a liquid flowing through a tube are expressed as$ [\eta ^x \rho ^yr^z]$ where  $\eta ,\rho $ and $r $ are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of $x, y$ and $z$ are given by

  • [AIPMT 2015]

Frequency is the function of density $(\rho )$, length $(a)$ and surface tension $(T)$. Then its value is