If we use permittivity $ \varepsilon $, resistance $R$, gravitational constant $G$ and voltage $V$ as fundamental physical quantities, then
[angular displacement] $= \varepsilon^0R^0G^0V^0$
[Velocity] = $\varepsilon ^{-1}R^{-1}G^0V^0$
[force] = $ \varepsilon ^1R^0G^0V^2$
all of the above
The potential energy of a point particle is given by the expression $V(x)=-\alpha x+\beta \sin (x / \gamma)$. A dimensionless combination of the constants $\alpha, \beta$ and $\gamma$ is
Match List $I$ with List $II$
List $I$ | List $II$ |
$A$ Torque | $I$ ${\left[\mathrm{M}^1 \mathrm{~L}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}$ |
$B$ Magnetic fileld | $II$ $\left[\mathrm{L}^2 \mathrm{~A}^1\right]$ |
$C$ Magneti moment | $III$ ${\left[\mathrm{M}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]}$ |
$D$ permeability of free space | $IV$ $\left[\mathrm{M}^1 \mathrm{~L}^2 \mathrm{~T}^{-2}\right]$ |
Choose the correct answer from the options given below :
If velocity $[V],$ time $[T]$ and force $[F]$ are chosen as the base quantities, the dimensions of the mass will be
If dimensions of critical velocity $v_c$ of a liquid flowing through a tube are expressed as$ [\eta ^x \rho ^yr^z]$ where $\eta ,\rho $ and $r $ are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of $x, y$ and $z$ are given by
Frequency is the function of density $(\rho )$, length $(a)$ and surface tension $(T)$. Then its value is