5. Continuity and Differentiation
medium

In  $[0, 1]$ Lagrange's mean value theorem is $ NOT$  applicable to

A

$f(x) = \left\{ {\begin{array}{*{20}{c}}
  {\frac{1}{2} - x,\,\,\,\,\,\,\,\,\,x < \frac{1}{2}} \\ 
  {{{\left( {\frac{1}{2} - x} \right)}^2},\,x \geqslant \frac{1}{2}} 
\end{array}} \right.$

B

$f(x) = \left\{ {\begin{array}{*{20}{c}}
  {\frac{{\sin x}}{x}\,\,x \ne 0} \\ 
  {1,\,\,\,\,\,\,\,\,x = \frac{1}{2}} 
\end{array}} \right.$

C

$f(x) = x|x|$

D

$f(x) = |x|$

(IIT-2003)

Solution

(a) The function defined in option $ (a) $ is not differentiable at $x = \frac{1}{2}$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.