- Home
- Standard 12
- Mathematics
5. Continuity and Differentiation
normal
The number of points, where the curve $y=x^5-20 x^3+50 x+2$ crosses the $x$-axis, is $............$.
A
$4$
B
$3$
C
$5$
D
$1$
(JEE MAIN-2023)
Solution

$y=x^5-20 x^3+50 x+2$
$\frac{d y}{d x}=5 x^4-60 x^2+50=5\left(x^4-12 x^2+10\right)$
$\frac{d y}{d x}=0 \Rightarrow x^4-12 x^2+10=0$
$\Rightarrow x^2=\frac{12 \pm \sqrt{144-40}}{2}$
$\Rightarrow x^2=6 \pm \sqrt{26} \Rightarrow x^2 \approx 6 \pm 5.1$
$\Rightarrow x^2 \approx 11.1,0.9$
$\Rightarrow x \approx \pm 3.3, \pm 0.95$
$f(0)=2, f(1)=+v e, f(2)=-ve$
$f(-1)=-v e, f(-2)=+v e$
Standard 12
Mathematics