5. Continuity and Differentiation
normal

The number of points, where the curve $y=x^5-20 x^3+50 x+2$ crosses the $x$-axis, is $............$.

A

$4$

B

$3$

C

$5$

D

$1$

(JEE MAIN-2023)

Solution

$y=x^5-20 x^3+50 x+2$

$\frac{d y}{d x}=5 x^4-60 x^2+50=5\left(x^4-12 x^2+10\right)$

$\frac{d y}{d x}=0 \Rightarrow x^4-12 x^2+10=0$

$\Rightarrow x^2=\frac{12 \pm \sqrt{144-40}}{2}$

$\Rightarrow x^2=6 \pm \sqrt{26} \Rightarrow x^2 \approx 6 \pm 5.1$

$\Rightarrow x^2 \approx 11.1,0.9$

$\Rightarrow x \approx \pm 3.3, \pm 0.95$

$f(0)=2, f(1)=+v e, f(2)=-ve$

$f(-1)=-v e, f(-2)=+v e$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.