The number of points, where the curve $y=x^5-20 x^3+50 x+2$ crosses the $x$-axis, is $............$.
$4$
$3$
$5$
$1$
Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?
$f(x)=x^{2}-1$ for $x \in[1,2]$
Which of the following function can satisfy Rolle's theorem ?
Suppose that $f$ is differentiable for all $x$ and that $f '(x) \le 2$ for all x. If $f (1) = 2$ and $f (4) = 8$ then $f (2)$ has the value equal to
Let $f(x)$ be a function continuous on $[1,2]$ and differentiable on $(1,2)$ satisfying
$f(1) = 2, f(2) = 3$ and $f'(x) \geq 1 \forall x \in (1,2)$.Define $g(x)=\int\limits_1^x {f(t)\,dt\,\forall \,x\, \in [1,2]} $ then the greatest value of $g(x)$ on $[1,2]$ is-
Verify Rolle's theorem for the function $y=x^{2}+2, a=-2$ and $b=2$