In a certain region uniform electric field $E$ and magnetic field $B$ are present in the opposite direction. At the instant $t = 0,$ a particle of mass $m$ carrying a charge $q$ is given velocity $v_o$ at an angle $\theta ,$ with the $y$ axis, in the $yz$ plane. The time after which the speed of the particle would be minimum is equal to
$\frac{{m{v_o}}}{{qE}}$
$\frac{{m{v_o}\sin \theta }}{{qE}}$
$\frac{{m{v_o}\cos \theta }}{{qE}}$
$\frac{{2\pi m}}{{qB}}$
A plane electromagnetic wave of frequency $25\; \mathrm{GHz}$ is propagating in vacuum along the $z-$direction. At a particular point in space and time, the magnetic field is given by $\overrightarrow{\mathrm{B}}=5 \times 10^{-8} \hat{\mathrm{j}}\; \mathrm{T}$. The corresponding electric field $\overrightarrow{\mathrm{E}}$ is (speed of light $\mathrm{c}=3 \times 10^{8}\; \mathrm{ms}^{-1})$
Which of the following is $NOT$ true for electromagnetic waves ?
The magnetic field vector of an electromagnetic wave is given by ${B}={B}_{o} \frac{\hat{{i}}+\hat{{j}}}{\sqrt{2}} \cos ({kz}-\omega {t})$; where $\hat{i}, \hat{j}$ represents unit vector along ${x}$ and ${y}$-axis respectively. At $t=0\, {s}$, two electric charges $q_{1}$ of $4\, \pi$ coulomb and ${q}_{2}$ of $2 \,\pi$ coulomb located at $\left(0,0, \frac{\pi}{{k}}\right)$ and $\left(0,0, \frac{3 \pi}{{k}}\right)$, respectively, have the same velocity of $0.5 \,{c} \hat{{i}}$, (where ${c}$ is the velocity of light). The ratio of the force acting on charge ${q}_{1}$ to ${q}_{2}$ is :-
The pressure exerted by an electromagnetic wave of intensity $I (watts/m^2)$ on a nonreflecting surface is [$c$ is the velocity of light]
The electric field for a plane electromagnetic wave travelling in the $+y$ direction is shown. Consider a point where $\vec E$ is in $+z$ direction. The $\vec B$ field is