The electric field part of an electromagnetic wave in vacuum is
$E = 3.1\,NC^{-1}\,cos\,[\,(1.8\,rad\,m^{-1})\,y + (5.4\times 18^8\,rad\,s^{-1})\,t\,]\,\hat i$
The wavelength of this part of electromagnetic wave is......$m$
$1.5$
$2$
$2.5$
$3.5$
Electromagnetic waves travel in a medium with speed of $1.5 \times 10^8 \mathrm{~ms}^{-1}$. The relative permeability of the medium is $2.0$ . The relative permittivity will be :
The electric field and magnetic field components of an electromagnetic wave going through vacuum is described by
$E _{ x }= E _0 \sin ( kz -\omega t )$
$B _{ y }= B _0 \sin ( kz -\omega t )$
Then the correct relation between $E_0$ and $B_0$ is given by
A plane electromagnetic wave, has frequency of $2.0 \times 10^{10}\, Hz$ and its energy density is $1.02 \times 10^{-8}\, J / m ^{3}$ in vacuum. The amplitude of the magnetic field of the wave is close to$....nT$
$\left(\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{\circ} \frac{ Nm ^{2}}{ C ^{2}}\right.$ and speed of $1 ight$ $\left.=3 \times 10^{8}\, ms ^{-1}\right)$
In an $EM$ wave propagating along $X-$ direction magnetic field oscillates at a frequency of $3 \times 10^{10}\, Hz$ along $Y-$ direction and has an amplitude of $10^{-7}\, T$. The expression for electric field will be
If an electromagnetic wave propagating through vacuum is described by $E_y=E_0 \sin (k x-\omega t)$; $B_z=B_0 \sin (k x-\omega t)$, then