Gujarati
7.Alternating Current
normal

In a circuit, a metal filament lamp is connected in series with a capacitor of capacitance $C \mu F$ across a $200 V , 50 Hz$ supply. The power consumed by the lamp is $500 W$ while the voltage drop across it is $100 V$. Assume that there is no inductive load in the circuit. Take $m m s$ values of the voltages. The magnitude of the phase-angle (in degrees) between the current and the supply voltage is $\varphi$.

Assume, $\pi \sqrt{3} \approx 5$. . . . .

($1$) The value of $C$ is . . . . . .

($2$) The value of $\varphi$ is

Give the answers of the questions ($1$) and ($2$)

A

$100,60$

B

$100,70$

C

$101,60$

D

$102,80$

(IIT-2021)

Solution

$\sqrt{ V _{ C }^2+ V _{ R }^2}=\varepsilon_{\operatorname{mm}}$

$\Rightarrow V _{ C }^2+100^2=200^2$

$V _{ C }=100 \sqrt{3 V }$    $. . . . . . (i)$

$\tan \phi=\frac{ V _{ C }}{ V _{ R }}=\frac{100 \sqrt{3}}{100}$

$\therefore \phi=60^{\circ}$   $. . . . . . (ii)$

$P = I _{\operatorname{mmm}} \varepsilon_{\operatorname{mm}} \cos \phi$

$=\frac{\varepsilon_{\operatorname{mms}}^2}{ z } \frac{1}{2}$

$500=\frac{200}{ z } \frac{1}{2}$

$\therefore z =40 \Omega$     $. . . . . . (iii)$

$\cos \phi=\frac{ R }{ Z } \Rightarrow \frac{1}{2}=\frac{ R }{40}$

$\therefore R =20$

$\& x _{ C }=\sqrt{ z ^2- R ^2}=\sqrt{40^2-20^2}=20 \sqrt{3} \Omega$

$\Rightarrow \frac{1}{\omega C }=20 \sqrt{3} \therefore C =100$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.