Gujarati
Hindi
4.Average
hard

In a class, average height of all students is '$a$ ' cms. Among them, average height of $10$ students is '$b$' cms and the average height of the remaining students is '$c$' cms. Find the number of students in the class. (Here $a>c$ and $b>c$ )

A

$\frac{(a(b-c))}{(a-c)}$

B

$\frac{(b-c)}{(a-c)}$

C

$\frac{(b-c)}{10(a-c)}$

D

$\frac{10(b-c)}{(a-c)}$

Solution

$\frac{ T }{ N }=a$

$T =a N$

and $b=$ average of $\frac{10}{10}$

average of $10=10 b$

$c=\frac{(\text { average of } n-10)}{(n-10)}$

average of $n-10=(N-10) \times c$

and

T $=$ average of $(N-10)+$ average of 10

Substituting.

$a N =( N -10) \times c+10 b$

$a N-c N=10 \times(b-c)$

$(a-c) \times N=10(b-c)$

$N =10 \times\left(\frac{(b-c)}{(a-c)}\right)$

Standard 13
Quantitative Aptitude

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.