In a right triangle $ABC$, right angled at $A$, on the leg $AC $ as diameter, a semicircle is described. The chord joining $A$ with the point of intersection $D$ of the hypotenuse and the semicircle, then the length $AC$ equals to
$\frac{{AB \cdot AD}}{{\sqrt {A{B^2} + A{D^2}} }}$
$\frac{{AB \cdot AD}}{{AB + AD}}$
$\sqrt {AB \cdot AD} $
$\frac{{AB \cdot AD}}{{\sqrt {A{B^2} - A{D^2}} }}$
Let $\mathrm{C}$ be the centroid of the triangle with vertices $(3,-1),(1,3)$ and $(2,4) .$ Let $P$ be the point of intersection of the lines $x+3 y-1=0$ and $3 \mathrm{x}-\mathrm{y}+1=0 .$ Then the line passing through the points $\mathrm{C}$ and $\mathrm{P}$ also passes through the point
Let the circumcentre of a triangle with vertices $A ( a , 3), B ( b , 5)$ and $C ( a , b ), ab >0$ be $P (1,1)$. If the line $AP$ intersects the line $BC$ at the point $Q \left( k _{1}, k _{2}\right)$, then $k _{1}+ k _{2}$ is equal to.
Let $PQR$ be a right angled isosceles triangle, right angled at $P\, (2, 1)$. If the equation of the line $QR$ is $2x + y = 3$, then the equation representing the pair of lines $PQ$ and $PR$ is
Area of the parallelogram whose sides are $x\cos \alpha + y\sin \alpha = p$ $x\cos \alpha + y\sin \alpha = q,\,\,$ $x\cos \beta + y\sin \beta = r$ and $x\cos \beta + y\sin \beta = s$ is
Triangle formed by the lines $3x + y + 4 = 0$ , $3x + 4y -15 = 0$ and $24x -7y = 3$ is a/an