In a system of particles, internal forces can change (for the system)

  • A

    The linear momentum but not the kinetic energy

  • B

    The kinetic energy but not the linear momentum

  • C

    Linear momentum as well as kinetic energy

  • D

    Neither the linear mometum nor the kinetic energy

Similar Questions

$Assertion$ : A helicopter must necessarily have two propellers.
$Reason$ : Two propellers are provided in helicopter in order to conserve linear momentum

  • [AIIMS 2010]

An object flying in alr with velocity $(20 \hat{\mathrm{i}}+25 \hat{\mathrm{j}}-12 \hat{\mathrm{k}})$ suddenly breaks in two pleces whose masses are in the ratio $1: 5 .$ The smaller mass flies off with a velocity $(100 \hat{\mathrm{i}}+35 \hat{\mathrm{j}}+8 \hat{\mathrm{k}}) .$ The velocity of larger piece will be

  • [NEET 2019]

A particle of mass $m$ moving horizontally with $v_0$ strikes $a$ smooth wedge of mass $M$, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to $a$ height $h$. Identify the correct statement $(s)$ related to the situation when the particle starts moving downward.

A particle $(\mathrm{m}=1\; \mathrm{kg})$ slides down a frictionless track $(AOC)$ starting from rest at a point $A$ (height $2\; \mathrm{m}$ ). After reaching $\mathrm{C}$, the particle continues to move freely in air as a projectile. When it reaching its highest point $P$ (height $1 \;\mathrm{m}$ ). the kinetic energy of the particle (in $\mathrm{J}$ ) is : (Figure drawn is schematic and not to scale; take $\left.g=10 \;\mathrm{ms}^{-2}\right)$

  • [JEE MAIN 2020]

A particle of mass $m$ travelling along $x-$ axis with speed $v_0$ shoots out $1/3^{rd}$ of its mass with a speed $2v_0$ along $y-$ axis. The velocity of remaining piece is