In a uniform electric field, a cube of side $1\ cm$ is placed. The total energy stored in the cube is $8.85\ \mu J.$ The electric field is parallel to four of the faces of the cube. The electric flux through any one of the remaining two faces is.
$\frac{1}{{5\sqrt 2 }}\,\ \frac{V}{m}$
$100\sqrt 2 \,\ \frac{V}{m}$
$5\sqrt 2 \,\ \frac{V}{m}$
$10\sqrt 2 \,\ \frac{V}{m}$
Two capacitors of capacitances $C$ and $2\, C$ are charged to potential differences $V$ and $2\, V$, respectively. These are then connected in parallel in such a manner that the positive terminal of one is connected to the negative terminal of the other. The final energy of this configuration is$.....CV^2$
If the charge on a capacitor is increased by $2C$, the energy stored in it increases by $44 \%$. The original charge on the capacitor is (in $C$ )
In a charged capacitor, the energy resides
A parallel plate capacitor is made of two square parallel plates of area $A$ , and separated by a distance $d < < \sqrt A $ . The capacitor is connected to a battery with potential $V$ and allowed to fully charge. The battery is then disconnected. A square metal conducting slab also with area $A$ but thickness $\frac {d}{2}$ is then fully inserted between the plates, so that it is always parallel to the plates. How much work has been done on the metal slab by external agent while it is being inserted?
An electron with kinetic energy $K _{1}$ enters between parallel plates of a capacitor at an angle $'\alpha'$ with the plates. It leaves the plates at angle $' \beta '$ with kinetic energy $K _{2}$. Then the ratio of kinetic energies $K _{1}: K _{2}$ will be ....... .