In an $EMW$ phase difference between electric and magnetic field vectors $\vec E$ and $\vec B$ is
$0$
$\pi /2$
$\pi$
$\pi /4$
The electric field of plane electromagnetic wave of amplitude $2\,V/m$ varies with time, propagating along $z-$ axis. The average energy density of magnetic field (in $J/m^3$ ) is
The terminology of different parts of the electromagnetic spectrum is given in the text. Use the formula $E = hv$ (for energy of a quantum of radiation: photon) and obtain the photon energy in units of $eV$ for different parts of the electromagnetic spectrum. In what way are the different scales of photon energies that you obtain related to the sources of electromagnetic radiation?
Light with an average flux of $20\, W / cm ^{2}$ falls on a non-reflecting surface at normal incidence having surface area $20\, cm ^{2} .$ The energy recelved by the surface during time span of $1$ minute is $............J$
The electric field part of an electromagnetic wave in vacuum is
$E = 3.1\,NC^{-1}\,cos\,[\,(1.8\,rad\,m^{-1})\,y + (5.4\times 18^8\,rad\,s^{-1})\,t\,]\,\hat i$
The wavelength of this part of electromagnetic wave is......$m$
The intensity of light from a source is $\left( {\frac{{500}}{\pi }} \right)W/{m^2}$ . Find the amplitude of electric field in this wave