A plane electromagnetic wave of frequency $100\, MHz$ is travelling in vacuum along the $x -$ direction. At a particular point in space and time, $\overrightarrow{ B }=2.0 \times 10^{-8} \hat{ k } T$. (where, $\hat{ k }$ is unit vector along $z-$direction) What is $\overrightarrow{ E }$ at this point ?
$0.6 \hat{j}\, V / m$
$6.0 \hat{ k }\, V / m$
$6.0 \hat{ j }\, V / m$
$0.6 \hat{ k }\, V / m$
Figure given shows the face of a cathode-ray oscilloscope tube, as viewed from in front. $i.e.$ the electron beam is coming out normally from the plane of the paper. The electron beam passes through a region where there are electric and magnetic fields directed as shown. The deflections of the spot from the center of the screen produced by the electric field $E$ and the magnetic field $B$ separately are equal in magnitude. Which one of the diagrams below shows a possible position of the spot on the screen when both fields are operating?
The electric field in an electromagnetic wave is given as $\vec{E}=20 \sin \omega\left(t-\frac{x}{c}\right) \vec{j} NC ^{-1}$ Where $\omega$ and $c$ are angular frequency and velocity of electromagnetic wave respectively. The energy contained in a volume of $5 \times 10^{-4}\, m ^3$ will be $.....\times 10^{-13}\,J$
(Given $\varepsilon_0=8.85 \times 10^{-12}\,C ^2 / Nm ^2$ )
A plane electromagnetic wave travels in vacuum along $z-$ direction. What can you say about the directions of its electric and magnetic field vectors? If the frequency of the wave is $30 \;MHz$, what is its wavelength in $m$?
The oscillating electric and magnetic vectors of an electromagnetic wave are oriented along
In an $E.M.$ wave the average energy density is associated with