In an $EM$ wave propagating along $X-$ direction magnetic field oscillates at a frequency of $3 \times 10^{10}\, Hz$ along $Y-$ direction and has an amplitude of $10^{-7}\, T$. The expression for electric field will be
$E_z = 30\, sin 2\pi\,(100x -3 \times 10^{10}\, t)\, V/m$
$E_z = 300\, sin 2\pi\,(100x -3 \times 10^{10}\, t)\, V/m$
$E_y = 30\, sin 2\pi\,(100x -3 \times 10^{10}\, t)\, V/m$
$E_z = 300\, sin 2\pi\,(100x - 3 \times 10^{10}\, t)\, V/m$
The intensity of a light pulse travelling along a communication channel decreases exponentially with distance $x$ according to the relation $I = {I_0}{e^{ - \alpha x}}$ , where $I_0$ is the intensity at $x = 0$ and $\alpha $ is the attenuation constant. The attenuation in $dB/km$ for an optical fibre in which the intensity falls by $50$ percent over a distance of $50\ km$ is
A lamp emits monochromatic green light uniformly in all directions. The lamp is $3\%$ efficient in converting electrical power to electromagnetic waves and consumes $100\,W$ of power . The amplitude of the electric field associated with the electromagnetic radiation at a distance of $5\,m$ from the lamp will be nearly.......$V/m$
Light with an energy flux of $25 \times {10^4}$ $W/m^2$ falls on a perfectly reflecting surface at normal incidence. If the surface area is $15\,\, cm^2$ the average force exerted on the surface is
A particle of charge $q$ and mass $m$ is moving along the $x-$ axis with a velocity $v,$ and enters a region of electric field $E$ and magnetic field $B$ as shown in figures below. For which figure the net force on the charge may be zero :-
The electric field of an electromagnetic wave in free space is given by $\vec E$$=10 cos (10^7t+kx)$$\hat j$ $volt/m $ where $t$ and $x$ are in seconds and metres respectively. It can be inferred that
$(1)$ the wavelength $\lambda$ is $188.4\, m.$
$(2)$ the wave number $k$ is $0.33\,\, rad/m.$
$(4)$ the wave is propagating along $+x$ direction.
Which one of the following pairs of statements is correct ?