8.Electromagnetic waves
medium

An electromagnetic wave of frequency $1\times10^{14}\, hertz$ is propagating along $z-$ axis. The amplitude of electric field is $4\, V/m$ . lf ${\varepsilon_0}=\, 8.8\times10^{-12}\, C^2/Nm^2$ , then average energy density of electric field will be:

A

$35 .2\times10^{-10}\, J/m^3$

B

$35 .2\times10^{-11}\, J/m^3$

C

$35 .2\times10^{-12}\, J/m^3$

D

$35 .2\times10^{-13}\, J/m^3$

(JEE MAIN-2014)

Solution

Given: Amplitude of electric field,

$E_{0}=4\,\mathrm{v} / \mathrm{m}$

Absolute per mitivity,

$\varepsilon_{0}=8.8 \times 10^{-12}\, \mathrm{c}^{2}\, / \mathrm{N}-\mathrm{m}^{2}$

Average energy density $u_{E}=?$

Applying formula,

Average energy density $u_{E}=\frac{1}{4} \varepsilon_{0} E^{2}$

$\Rightarrow u_{E}=\frac{1}{4} \times 8.8 \times 10^{-12} \times(4)^{2}$

$=35.2 \times 10^{-12} \,\mathrm{J} / \mathrm{m}^{3}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.