- Home
- Standard 11
- Physics
11.Thermodynamics
normal
In an adiabatic expansion of a gas initial and final temperatures are ${T_1}$ and ${T_2}$ respectively, then the change in internal energy of the gas is
A
$\frac{R}{{\gamma - 1}}({T_2} - {T_1})$
B
$\frac{R}{{\gamma - 1}}({T_1} - {T_2})$
C
$R({T_1} - {T_2})$
D
Zero
Solution
(a) $\Delta U = – \Delta W = – \frac{{R({T_1} – {T_2})}}{{(\gamma – 1)}}$$ = \frac{{R({T_2} – {T_1})}}{{\gamma – 1}}$
Standard 11
Physics
Similar Questions
A student records $\Delta Q,\Delta U$ and $\Delta W$ for a thermodynamic cycle $A \to B \to C \to A.$ Certain entries are missing. Find correct entry in following options
$AB$ | $BC$ | $CA$ | |
$\Delta W$ | $40\,J$ | $30\,J$ | |
$\Delta U$ | $50\,J$ | ||
$\Delta Q$ | $150\,J$ | $10\,J$ |
normal