$1\,m$ લંબાઈ અને $1\,mm^2$ ક્ષેત્રફળ ધરાવતા બે બ્રાસ અને સ્ટીલના તારને શ્રેણીમાં જોડી તેના એક છેડાને દઢ આધાર સાથે જોડેલો છે.અને બીજા છેડાને ખેચવામાં આવે છે. તારની લંબાઈમાં $0.2\,mm$ વધારો કરવા માટે કેટલા પ્રતિબળની જરૂર પડે? [સ્ટીલ અને બ્રાસના યંગ મોડ્યુલસ અનુક્રમે $120\times 10^9\,N/m^2$ અને $60\times 10^9\,N/m^2$ છે]
$1.8\times 10^6\,N/m^2$
$0.2\times 10^6\,N/m^2$
$1.2\times 10^6\,N/m^2$
એક પણ નહીં
$A$ આડછેદ ધરાવતા સળીયાની લંબાઈ $L$ છે અને વજન $W$ છે. તેને આડા ટેકા વડે જોડવામા આવેલ છે. જો તારનો યંગ મોડ્યુલસ $Y$ હોય તો તેમાં ઉદભવતુ વિસ્તરણ
આપેલ તંત્ર માટે $W_2$ તારમાં વિકૃતિ કેટલી થાય?
$L$ લંબાઇ અને $r$ ત્રિજયા ધરાવતા તારનો યંગ મોડયુલસ $Y\, N/m^2$ છે,તો સમાન દ્રવ્યના બનેલા $L/2$ લંબાઇ અને $r/2$ ત્રિજયા ધરાવતા તારનો યંગ મોડયુલસ કેટલો થાય?
$50\; {cm}$ અને $100 \;{cm}$ અનુક્રમે અંદરની અને બહારની ત્રિજ્યા ધરાવતા સ્ટીલના બનેલા ચાર સ્તંભ $50 \times 10^{3} {kg}$ દળને સપોર્ટ કરે છે. બધા પર સમાન દળનું વિતરણ ધરવામાં આવે તો દરેક નળાકારની તણાવ વિકૃતિની ગણતરી કરો. [$\left.{Y}=2.0 \times 10^{11} \;{Pa}, {g}=9.8\; {m} / {s}^{2}\right]$
આકૃતિમાં લોડ-વિસ્તરણનો ગ્રાફ દર્શાવેલ છે. અહી તારની લંબાઈ અને દ્રવ્ય સમાન છે. પાતળો તાર કઈ રેખા વડે દર્શાંવેલ છે.