In an experiment, the values of refractive indices of glass were found to be $1.54, 1.53,$$1.44,1.54,1.56$ and $1.45$ in successive measurements, then Mean absolute error is
$0.004$
$0.04$
$0.4$
$4$
In the determination of Young's modulus $\left(Y=\frac{4 MLg }{\pi / d ^2}\right)$ by using Searle's method, a wire of length $L=2 \ m$ and diameter $d =0.5 \ mm$ is used. For a load $M =2.5 \ kg$, an extension $\ell=0.25 \ mm$ in the length of the wire is observed. Quantities $d$ and $\ell$ are measured using a screw gauge and a micrometer, respectively. They have the same pitch of $0.5 \ mm$. The number of divisions on their circular scale is $100$ . The contributions to the maximum probable error of the $Y$ measurement
The least count of a stop watch is $0.2\, second$. The time of $20\, oscillations$ of a pendulum is measured to be $25\, second$. The percentage error in the measurement of time will be ........ $\%$
The relative density of material of a body is found by weighing it first in air and then in water. If the weight in air is ($5.00 \pm 0.05$) Newton and weight in water is ($4.00 \pm 0.05$) Newton. Then the relative density along with the maximum permissible percentage error is
A physical quantity $z$ depends on four observables $a,$ $b,$ $c$ and $d ,$ as $z =\frac{ a ^{2} b ^{\frac{2}{3}}}{\sqrt{ c } d ^{3}} .$ The percentage of error in the measurement of $a, b, c$ and $d$ are $2 \%, 1.5 \%, 4 \%$ and $2.5 \%$ respectively. The percentage of error in $z$ is$......\%$
A cylindrical wire of mass $(0.4 \pm 0.01)\,g$ has length $(8 \pm 0.04)\,cm$ and radius $(6 \pm 0.03)\,mm$.The maximum error in its density will be $......\,\%$