In an hydrogen atom, the electron revolves around the nucleus in an orbit of radius $0.53 \times {10^{ - 10}}\,m$. Then the electrical potential produced by the nucleus at the position of the electron is......$V$
$-13.6$
$-27.2$
$27.2$
$13.6$
A point charge of magnitude $+ 1\,\mu C$ is fixed at $(0, 0, 0) $. An isolated uncharged spherical conductor, is fixed with its center at $(4, 0, 0).$ The potential and the induced electric field at the centre of the sphere is
Three concentric spherical metallic shells $X , Y$ and $Z$ of radius $a , b$ and c respectively $[ a < b < c ]$ have surface charge densities $\sigma,-\sigma$ and $\sigma$, respectively. The shells $X$ and $Z$ are at same potential. If the radii of $X$ and $Y$ are $2\,cm$ and $3\,cm$, respectively.The radius of shell $Z$ is $......cm$.
A charge of ${10^{ - 9}}\,C$ is placed on each of the $64$ identical drops of radius $2\,cm$. They are then combined to form a bigger drop. Find its potential
Three isolated equal charges are placed at the three comers of an equilateral triangle as shown in figure. The statement which is true for net electric potential $V$ and net electric field intensity $E$ at the centre of the triangle is
At a certain distance from a point charge, the field intensity is $500\, Vm^{-1}$ and the potential is $-3000\, V$. The distance to the charge and the magnitude of the charge respectively are