Three concentric spherical metallic shells $X , Y$ and $Z$ of radius $a , b$ and c respectively $[ a < b < c ]$ have surface charge densities $\sigma,-\sigma$ and $\sigma$, respectively. The shells $X$ and $Z$ are at same potential. If the radii of $X$ and $Y$ are $2\,cm$ and $3\,cm$, respectively.The radius of shell $Z$ is $......cm$.

  • [JEE MAIN 2023]
  • A

    $4$

  • B

    $3$

  • C

    $2$

  • D

    $5$

Similar Questions

An infinite number of charges each equal to $0.2\,\mu C$ are arranged in a line at distances $1\,m, 2\,m, 4\,m, 8\,m......$ from a fixed point. The potential at fixed point is ......$kV$

A charge $+q$ is fixed at each of the points $x = x_0,\,x = 3x_0,\,x = 5x_0$, .... upto $\infty $ on $X-$  axis and charge $-q$ is fixed on each of the points $x = 2x_0,\,x = 4x_0,\,x = 6x_0$, .... upto $\infty $ . Here $x_0$ is a positive constant. Take the potential at a point due to a charge $Q$ at a distance $r$ from it to be $\frac{Q}{{4\pi {\varepsilon _0}r}}$. Then the potential at the origin due to above system of charges will be

Two insulated charged conducting spheres of radii $20\,cm$ and $15\,cm$ respectively and having an equal charge of $10\,C$ are connected by a copper wire and then they are separated. Then

The linear charge density on a dielectric ring of radius $R$ varies with $\theta $ as $\lambda \, = \,{\lambda _0}\,\cos \,\,\theta /2,$ where $\lambda _0$ is constant. Find the potential at the centre $O$ of ring. [in volt]

A hollow conducting sphere of radius $R$ has a charge $( + Q)$ on its surface. What is the electric potential within the sphere at a distance $r = \frac{R}{3}$ from its centre