In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If $A \subset B$ and $B \subset C,$ then $A \subset C$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

True

Let $A \subset B$ and $B \subset C$

Let $x \in A$

$\Rightarrow x \in B \quad[\because A \subset B]$

$\Rightarrow x \in C \quad[\because B \subset C]$

Similar Questions

In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If $A \subset B$ and $B \in C,$ then $A \in C$

Write down all the subsets of the following sets

$\{ a\} $

Let $A=\{1,2,3,4,5,6\} .$ Insert the appropriate symbol $\in$ or $\notin$ in the blank spaces:

$ 8\, .......\, A $

Write the following sets in the set-builder form :

$\{ 3,6,9,12\}$

Match each of the set on the left in the roster form with the same set on the right described in set-builder form:

$(i)$ $\{1,2,3,6\}$ $(a)$ $\{ x:x$ is a prime number and a divisor $6\} $ 
$(ii)$ $\{2,3\}$ $(b)$ $\{ x:x$ is an odd natural number less than $10\} $
$(iii)$ $\{ M , A , T , H , E , I , C , S \}$ $(c)$ $\{ x:x$ is natural number and divisor of $6\} $
$(iv)$ $\{1,3,5,7,9\}$ $(d)$ $\{ x:x$ a letter of the work $\mathrm{MATHEMATICS}\} $