In hydrogenation reaction at ${27\,^o}C$, it is observed that hydrogen gas pressure falls from $2\,atm$ to $1.2\,atm$ in $50\,\min$. Calculate the rate of disappearance of hydrogen
$3.6\times10^{-8}\,Ms^{-1}$
$1.08\times10^{-5}\,Ms^{-1}$
$5.2\times10^{-3}\,Ms^{-1}$
$6.5\times10^{-4}\,Ms^{-1}$
In a reaction $2A + B \to {A_2}B$, the reactant $ A $ will disappear at
For the non - stoichimetre reaction $2A + B \rightarrow C + D,$ the following kinetic data were obtained in three separate experiments, all at $298\, K.$
Initial Concentration $(A)$ |
Initial Concentration $(A)$ |
Initial rate of formation of $C$ $(mol\,L^{-1}\,s^{-1})$ |
$0.1\,M$ | $0.1\,M$ | $1.2\times 10^{-3}$ |
$0.1\,M$ | $0.2\,M$ | $1.2\times 10^{-3}$ |
$0.2\,M$ | $0.1\,M$ | $2.4 \times 10^{-3}$ |
The rate law for the formation of $C$ is :
If doubling the concentration of a reactant $ 'A'$ increases the rate $4$ times and tripling the concentration of $'A' $ increases the rate $9$ times, the rate is proportional to
${A_2} + {B_2} \to 2AB;R.O.R = k{[{A_2}]^a}{[{B_2}]^b}$
Initial $[A_2]$ | Initial $[B_2]$ | $R.O.R.\,(r)\,Ms^{-1}$ |
$0.2$ | $0.2$ | $0.04$ |
$0.1$ | $0.4$ | $0.04$ |
$0.2$ | $0.4$ | $0.08$ |
Order of reaction with respect to $A_2$ and $B_2$ are respectively
For the reaction
$2H_2 + 2NO \to N_2 + 2H_2O$
the following mechanism has been proposed
$(i)$ $2NO \rightleftharpoons N_2O_2\,$ (fast)
$(ii)$ $N_2O_2 + H_2 \xrightarrow{{{k_2}}} N_2O + H_2O\,$ (slow)
$(iii)$ $N_2O + H_2 \to N_2 + H_2O\,$ (fast)
then what will be the rate law of this reaction ?