In Millikan's oil drop experiment, a charged drop falls with terminal velocity $V$. If an electric field $E$ is applied in vertically upward direction then it starts moving in upward direction with terminal velocity $2V$.If magnitude of electric field is decreased to $\frac{E}{2}$, then terminal velocity will become

  • A

    $\frac{V}{2}$

  • B

    $V$

  • C

    $\frac{{3V}}{2}$

  • D

    $2V$

Similar Questions

Two identical positive charges are fixed on the $y$ -axis, at equal distances from the  origin $O$. A particle with a negative charge starts on the $x$ -axis at a large distance  from $O$, moves along the $+ x$ -axis, passes through $O$ and moves far away from $O$. Its acceleration $a$ is taken as positive in the positive $x$ -direction. The particle’s  acceleration a is plotted against its $x$ -coordinate. Which of the following best represents  the plot?

A proton sits at coordinates $(x, y) = (0, 0)$, and an electron at $(d, h)$, where $d >> h$. At time $t = 0$, $a$ uniform electric field $E$ of unknown magnitude but pointing in the positive $y$ direction is turned on. Assuming that $d$ is large enough that the proton-electron interaction is negligible, the $y$ coordinates of the two particles will be equal (at equal time)

A wooden block performs $SHM$ on a frictionless surface with frequency, $v_0$. The block carries a charge $+Q$ on its surface. If now a uniform electric field $\vec{E}$ is switched-on as shown, then the $SHM$ of the block will be

  • [IIT 2011]

A small point mass carrying some positive charge on it, is released from the edge of a table. There is a uniform electric field in this region in the horizontal direction. Which of the following options then correctly describe the trajectory of the mass ? (Curves are drawn schematically and are not to scale).

  • [JEE MAIN 2020]

A charged particle of mass $m = 2\ kg$ and charge $1μC$ is projected from a horizontal ground at an angle $\theta  = 45^o$ with speed $10\ ms^{-1}$ . In space, a horizontal electric field towards the direction of projection $E = 2 \times 10^7\ NC^{-1}$ exists. The range of the projectile is......$m$