In the diagram shown, no friction at any contact surface. Initially, the spring has no deformation. What will be the maximum deformation in the spring? Consider all the strings to be sufficiency large. Consider the spring constant to be $K$.

37-643

  • A

    $4F / 3K$

  • B

    $8F / 3K$

  • C

    $F / 3K$

  • D

    none

Similar Questions

$A$ block of mass $m$ moving with a velocity $v_0$ on a smooth horizontal surface strikes and compresses a spring of stiffness $k$ till mass comes to rest as shown in the figure. This phenomenon is observed by two observers:

$A$: standing on the horizontal surface

$B$: standing on the block 

To an observer $A,$ the net work done on the block is

Two similar springs $P$ and $Q$ have spring constants $K_P$ and $K_Q$, such that $K_P > K_Q .$ They are stretched first by the same amount (case $a$), then by the same force (case $b$). The work done by the springs $W_P$ and $W_Q$ are related as, in case $(a)$ and case $(b)$ respectively

  • [AIPMT 2015]

A ball of mass $2 \,m$ and a system of two balls with equal masses $m$ connected by a massless spring, are placed on a smooth horizontal surface (see figure below). Initially, the ball of mass $2 \,m$ moves along the line passing through the centres of all the balls and the spring, whereas the system of two balls is at rest. Assuming that the collision between the individual balls is perfectly elastic, the ratio of vibrational energy stored in the system of two connected balls to the initial kinetic energy of the ball of mass $2 \,m$ is

  • [KVPY 2021]

Two bodies $A$ and $B$ of mass $m$ and $2\, m$ respectively are placed on a smooth floor. They are connected by a spring of negligible mass. $A$ third body $C$ of mass $m$ is placed on the floor. The body $C$ moves with a velocity $v_0$ along the line joining $A$ and $B$ and collides elastically with $A$. At a certain time after the collision it is found that the instantaneous velocities of $A$ and $B$ are same and the compression of the spring is $x_0$. The spring constant $k$ will be

  • [AIEEE 2012]

$A$ ball of mass $m$ is attached to the lower end of light vertical spring of force constant $k$. The upper end of the spring is fixed. The ball is released from rest with the spring at its normal (unstretched) length, comes to rest again after descending through a distance $x.$