Gujarati
Hindi
5.Work, Energy, Power and Collision
normal

In the diagram shown, no friction at any contact surface. Initially, the spring has no deformation. What will be the maximum deformation in the spring? Consider all the strings to be sufficiency large. Consider the spring constant to be $K$.

A

$4F / 3K$

B

$8F / 3K$

C

$F / 3K$

D

none

Solution

Work done by pseudoframe in $C -$frame is zero. $W_{1 F}=F x_{1 C}$

$W_{2 F}=2 F x_{2 C}$

$0-\frac{1}{2} k x_{\mathrm{max}}^{2}+F X_{1 C}+2 F x_{2 C}=0…….ii$

$\frac{1}{2} k_{\max }^{2}=F x_{1 C}+2 F x_{2 C}$

$x_{\max }=x_{1 C}+x_{2 C}$

From the concept of centre of mass

$M x_{1 C}=2 M x_{2 C}$

$X_{1 C}=2 x_{2 C}$

$\therefore x_{1 C}+2 X_{2 C}=x_{\max }$

$\therefore 3 x_{2 C}=x_{\max }$

$x_{2 C}=\frac{x_{\max }}{3}$ and $x_{1 C}=\frac{2 x_{\max }}{3}$ Puttng the values in eqn ii

$\frac{1}{2} k x_{\max }^{2}=F\left(\frac{2 x_{\max }}{3}\right)+2 F\left(\frac{x_{\max }}{3}\right)$

$\frac{1}{2} k x_{\max }=\frac{2 F}{3}+\frac{2 F}{3}$

$x_{\max }=\frac{8 F}{3 K}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.