A spring with spring constant $k $ is extended from $x = 0$to$x = {x_1}$. The work done will be
$kx_1^2$
$\frac{1}{2}kx_1^2$
$2kx_1^2$
$2k{x_1}$
The potential energy of a certain spring when stretched through a distance $S$ is $10 \,joule$. The amount of work (in $joule$) that must be done on this spring to stretch it through an additional distance $S$ will be
A massless platform is kept on a light elastic spring as shown in fig. When a sand particle of mass $0.1\; kg$ is dropped on the pan from a height of $0.24 \;m$, the particle strikes the pan and spring is compressed by $0.01\; m$.
From what height should the particle be dropped to cause a compression of $0.04\; m$.
A block is simply released from the top of an inclined plane as shown in the figure above. The maximum compression in the spring when the block hits the spring is :
Pulley and spring are massless and the friction is absent everwhere. $5\, kg$ block is released from rest. The speed of $5\, kg$ block when $2\, kg$ block leaves the contact with ground is (take force constant of the spring $K = 40\, N/m$ and $g = 10\, m/s^2)$
A $0.5 \,kg$ block moving at a speed of $12 \,ms ^{-1}$ compresses a spring through a distance $30\, cm$ when its speed is halved. The spring constant of the spring will be $Nm ^{-1}$.