In the figure shown, radius of circle $C_1$ be $ r$ and that of $C_2$ be $\frac{r}{2}$ , where $r= \frac {1}{3} PQ,$ then length of $AB$ is (where $P$ and $Q$ being centres of $C_1$ $\&$ $C_2$ respectively)
$2 \sqrt {3} r$
$\frac{3 \sqrt {3} r}{4}$
$3 \sqrt {3} r$
$\frac{3 \sqrt {3} r}{2}$
The circle on the chord $x\cos \alpha + y\sin \alpha = p$ of the circle ${x^2} + {y^2} = {a^2}$ as diameter has the equation
If the circles ${x^2} + {y^2} + 2x + 2ky + 6 = 0$ and ${x^2} + {y^2} + 2ky + k = 0$ intersect orthogonally, then $k$ is
If the centre of a circle which passing through the points of intersection of the circles ${x^2} + {y^2} - 6x + 2y + 4 = 0$and ${x^2} + {y^2} + 2x - 4y - 6 = 0$ is on the line $y = x$, then the equation of the circle is
The range of values of $'a'$ such that the angle $\theta$ between the pair of tangents drawn from the point $(a, 0)$ to the circle $x^2 + y^2 = 1$ satisfies $\frac{\pi }{2} < \theta < \pi$ is :
Two given circles ${x^2} + {y^2} + ax + by + c = 0$ and ${x^2} + {y^2} + dx + ey + f = 0$ will intersect each other orthogonally, only when