The centre of the circle passing through $(0, 0)$ and $(1, 0)$ and touching the circle ${x^2} + {y^2} = 9$ is

  • [AIEEE 2002]
  • A

    $\left( {\frac{1}{2},\frac{1}{2}} \right)$

  • B

    $\left( {\frac{1}{2}, - \sqrt 2 } \right)$

  • C

    $\left( {\frac{3}{2},\frac{1}{2}} \right)$

  • D

    $\left( {\frac{1}{2},\frac{3}{2}} \right)$

Similar Questions

If the two circles $2{x^2} + 2{y^2} - 3x + 6y + k = 0$ and ${x^2} + {y^2} - 4x + 10y + 16 = 0$ cut orthogonally, then the value of $k$ is

The line $L$ passes through the points of intersection of the circles ${x^2} + {y^2} = 25$ and ${x^2} + {y^2} - 8x + 7 = 0$. The length of perpendicular from centre of second circle onto the line $L$, is

The number of common tangents to the circles ${x^2} + {y^2} - 4x - 6y - 12 = 0$ and ${x^2} + {y^2} + 6x + 18y + 26 = 0$ is

Let

$A=\left\{(x, y) \in R \times R \mid 2 x^{2}+2 y^{2}-2 x-2 y=1\right\}$

$B=\left\{(x, y) \in R \times R \mid 4 x^{2}+4 y^{2}-16 y+7=0\right\} \text { and }$

$C=\left\{(x, y) \in R \times R \mid x^{2}+y^{2}-4 x-2 y+5 \leq r^{2}\right\}$

Then the minimum value of $|r|$ such that $A \cup B \subseteq C$ is equal to:

  • [JEE MAIN 2021]

Equation of radical axis of the circles ${x^2} + {y^2} - 3x - 4y + 5 = 0$, $2{x^2} + 2{y^2} - 10x$$ - 12y + 12 = 0$ is