In which of the following functions Rolle’s theorem is applicable ?
$ f(x) =\left\{ \begin{array}{l}x\,\,\,,\,\,0\, \le \,x\, < \,\,1\\0\,\,\,\,,\,\,\,\,\,\,\,\,\,x\,\, = 1\end{array} \right.$ on $[0, 1]$
$f(x) = \left\{ \begin{array}{l}\frac{{\sin x}}{x}\,\,,\, - \pi \, \le x\, < 0\\\,0\,\,\,\,\,\,\,\,\,,\,\,\,\,\,\,\,\,\,\,\,\,x\, = \,0\end{array} \right.$ on $[-\pi , 0]$
$f(x)= \frac{{{x^2} - x - 6}}{{x - 1}}$ on $[-2,3]$
$f(x) = \left\{ \begin{array}{l}\frac{{{x^3} - 2{x^2} - 5x + 6}}{{x - 1}}\,\,\,if\,\,x\, \ne 1,\,\,on\,[ - 2,3]\\ - 6\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,if\,\,\,\,x\, = 1\end{array} \right.$
If the equation
${a_n}{x^{n - 1}} + \,{a_{n - 1}}{x^{n - 1}} + \,......\, + \,{a_1}x = 0,\,{a_1} \ne 0,n\, \geqslant \,2,$
has a positive root $x= \alpha ,$ then the equation
$n{a_n}{x^{n - 1}} + \,(n - 1){a_{n - 1}}{x^{n - 1}} + \,......\, + \,{a_1} = 0$
has a positive root which is
Let $f(x) = \sqrt {x - 1} + \sqrt {x + 24 - 10\sqrt {x - 1} ;} $ $1 < x < 26$ be real valued function. Then $f\,'(x)$ for $1 < x < 26$ is
If $(1 -x + 2x^2)^n$ = $a_0 + a_1x + a_2x^2+..... a_{2n}x^{2n}$ , $n \in N$ , $x \in R$ and $a_0$ , $a_2$ and $a_1$ are in $A$ . $P$ .,then there exists
If the function $f(x) = - 4{e^{\left( {\frac{{1 - x}}{2}} \right)}} + 1 + x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3}$ and $g(x)=f^{-1}(x) \,;$ then the value of $g'(-\frac{7}{6})$ equals
For which interval, the function ${{{x^2} - 3x} \over {x - 1}}$ satisfies all the conditions of Rolle's theorem