- Home
- Standard 12
- Mathematics
5. Continuity and Differentiation
normal
If Rolle's theorem holds for the function $f(x) = 2{x^3} + b{x^2} + cx,\,x\, \in \,\left[ { - 1,1} \right]$ at the point $x = \frac{1}{2}$ , then $(2b+c)$ is equal to
A
$1$
B
$-1$
C
$2$
D
$-3$
Solution
$b=\frac{1}{2}, c=-2$
$\therefore \quad(2 b+c)=1+(-2)=-1$
(apply conditions of Rolle's theorem)
Standard 12
Mathematics