lf Rolle's theorem holds for the function $f(x) =2x^3 + bx^2 + cx, x \in [-1, 1],$  at the point $x = \frac {1}{2},$ then $2b+ c$ equals

  • [JEE MAIN 2015]
  • A

    $-3$

  • B

    $-1$

  • C

    $2$

  • D

    $1$

Similar Questions

Verify Mean Value Theorem, if $f(x)=x^{3}-5 x^{2}-3 x$ in the interval $[a, b],$ where $a=1$ and $b=3 .$ Find all $c \in(1,3)$ for which $f^{\prime}(c)=0$

Let $f(x)$ be a function continuous on $[1,2]$ and differentiable on $(1,2)$ satisfying
$f(1) = 2, f(2) = 3$ and $f'(x) \geq 1 \forall x \in (1,2)$.Define $g(x)=\int\limits_1^x {f(t)\,dt\,\forall \,x\, \in [1,2]} $ then the greatest value of $g(x)$ on $[1,2]$ is-

Let $a > 0$ and $f$ be continuous in $[- a, a]$. Suppose that $f ' (x) $ exists and $f ' (x) \le 1$ for all $x \in (- a, a)$. If $f (a) = a$ and $f (- a) = - a$ then $f (0)$

Verify Mean Value Theorem, if $f(x)=x^{2}-4 x-3$ in the interval $[a, b],$ where $a=1$ and $b=4$

Consider a quadratic equation $ax^2 + bx + c = 0,$ where $2a + 3b + 6c = 0$ and let $g(x) = a\frac{{{x^3}}}{3} + b\frac{{{x^2}}}{2} + cx.$

Statement $1:$ The quadratic equation has at least one root in the interval $(0, 1).$

Statement $2:$ The Rolle's theorem is applicable to function $g(x)$ on the interval $[0, 1 ].$

  • [AIEEE 2012]