Latus rectum of the conic satisfying the differential equation, $ x dy + y dx = 0$  and passing through the point $ (2, 8) $ is :

  • A

    $4 \sqrt 2 $

  • B

    $8$

  • C

    $8 \sqrt 2 $

  • D

    $16$

Similar Questions

The equation of a line passing through the centre of a rectangular hyperbola is $x -y -1 = 0$. If one of the asymptotes is $3x -4y -6 = 0$, the equation of other asymptote is

The auxiliary equation of circle of hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, is

A tangent to a hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ intercepts a length of unity from each of the co-ordinate axes, then the point $(a, b)$ lies on the rectangular hyperbola

Consider a hyperbola $\mathrm{H}$ having centre at the origin and foci and the $\mathrm{x}$-axis. Let $\mathrm{C}_1$ be the circle touching the hyperbola $\mathrm{H}$ and having the centre at the origin. Let $\mathrm{C}_2$ be the circle touching the hyperbola $\mathrm{H}$ at its vertex and having the centre at one of its foci. If areas (in sq. units) of $\mathrm{C}_1$ and $\mathrm{C}_2$ are $36 \pi$ and $4 \pi$, respectively, then the length (in units) of latus rectum of $\mathrm{H}$ is

  • [JEE MAIN 2024]

If $\frac{{{{\left( {3x - 4y - z} \right)}^2}}}{{100}} - {\frac{{\left( {4x + 3y - 1} \right)}}{{225}}^2} = 1$ then
length of latusrectum of hyperbola is