10-2. Parabola, Ellipse, Hyperbola
hard

Let $\lambda x-2 y=\mu$ be a tangent to the hyperbola $a^{2} x^{2}-y^{2}=b^{2}$. Then $\left(\frac{\lambda}{a}\right)^{2}-\left(\frac{\mu}{b}\right)^{2}$ is equal to

A

$-2$

B

$-4$

C

$2$

D

$4$

(JEE MAIN-2022)

Solution

$\lambda x -2 y =\mu$ is a tangent to the curve

$a^{2} x^{2}-y^{2}=b^{2}$ then

$a ^{2} x ^{2}-\left(\frac{\lambda x -\mu}{2}\right)^{2}= b ^{2}$

$\left(4 a ^{2}-\lambda^{2}\right) x ^{2}+2 \lambda \mu x -\mu^{2}-4 b ^{2}=0$

Disc. $=0$

$4 \lambda^{2} \mu^{2}+4\left(4 a ^{2}-\lambda^{2}\right)\left(\mu^{2}+4 b ^{2}\right)=0$

$4 \lambda^{2} b^{2}-4 a^{2} \mu^{2}=16 a^{2} b^{2}$

$\frac{\lambda^{2}}{a^{2}}-\frac{\mu^{2}}{b^{2}}=4$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.