Let ${a_1},{a_2}...,{a_{10}}$ be a $G.P.$ If $\frac{{{a_3}}}{{{a_1}}} = 25,$ then $\frac {{{a_9}}}{{{a_{  5}}}}$ equal

  • [JEE MAIN 2019]
  • A

    $5^4$

  • B

    $4(5^2)$

  • C

    $5^3$

  • D

    $2(5^2)$

Similar Questions

If the sum of the second, third and fourth terms of a positive term $G.P.$ is $3$ and the sum of its sixth, seventh and eighth terms is $243,$ then the sum of the first $50$ terms of this $G.P.$ is

  • [JEE MAIN 2020]

The sum of a $G.P.$ with common ratio $3$ is $364$, and last term is $243$, then the number of terms is

Find the sum of the following series up to n terms:

$6+.66+.666+\ldots$

If ${(p + q)^{th}}$ term of a $G.P.$ be $m$ and ${(p - q)^{th}}$ term be $n$, then the ${p^{th}}$ term will be

Find the sum to $n$ terms of the sequence, $8,88,888,8888 \ldots$