- Home
- Standard 11
- Mathematics
8. Sequences and Series
easy
If $G$ be the geometric mean of $x$ and $y$, then $\frac{1}{{{G^2} - {x^2}}} + \frac{1}{{{G^2} - {y^2}}} = $
A
${G^2}$
B
$\frac{1}{{{G^2}}}$
C
$\frac{2}{{{G^2}}}$
D
$3{G^2}$
Solution
(b) As given $G = \sqrt {xy} $
$\therefore $$\frac{1}{{{G^2} – {x^2}}} + \frac{1}{{{G^2} – {y^2}}} = \frac{1}{{xy – {x^2}}} + \frac{1}{{xy – {y^2}}}$
$ = \frac{1}{{x – y}}\left\{ { – \frac{1}{x} + \frac{1}{y}} \right\} = \frac{1}{{xy}} = \frac{1}{{{G^2}}}$.
Standard 11
Mathematics