If $G$ be the geometric mean of $x$ and $y$, then $\frac{1}{{{G^2} - {x^2}}} + \frac{1}{{{G^2} - {y^2}}} = $
${G^2}$
$\frac{1}{{{G^2}}}$
$\frac{2}{{{G^2}}}$
$3{G^2}$
The sum of the series $5.05 + 1.212 + 0.29088 + ...\,\infty $ is
If $\frac{{x + y}}{2},\;y,\;\frac{{y + z}}{2}$ are in $H.P.$, then $x,\;y,\;z$ are in
The product of three geometric means between $4$ and $\frac{1}{4}$ will be
If $a, b, c$ and $d$ are in $G.P.$ show that:
$\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$
If the first term of a $G.P.$ be $5$ and common ratio be $ - 5$, then which term is $3125$