If $G$ be the geometric mean of $x$ and $y$, then $\frac{1}{{{G^2} - {x^2}}} + \frac{1}{{{G^2} - {y^2}}} = $
${G^2}$
$\frac{1}{{{G^2}}}$
$\frac{2}{{{G^2}}}$
$3{G^2}$
The value of ${4^{1/3}}{.4^{1/9}}{.4^{1/27}}...........\infty $ is
Let $a_{1}, a_{2}, a_{3}, \ldots$ be a G.P. such that $a_{1}<0$; $a_{1}+a_{2}=4$ and $a_{3}+a_{4}=16 .$ If $\sum\limits_{i=1}^{9} a_{i}=4 \lambda,$ then $\lambda$ is equal to
Let $a, a r, a r^2, \ldots . . .$. be an infinite $G.P.$ If $\sum_{n=0}^{\infty} a^n=57$ and $\sum_{n=0}^{\infty} a^3 r^{3 n}=9747$, then $a+18 r$ is equal to :
The $G.M.$ of roots of the equation ${x^2} - 18x + 9 = 0$ is
If the sum of an infinite $GP$ $a, ar, ar^{2}, a r^{3}, \ldots$ is $15$ and the sum of the squares of its each term is $150 ,$ then the sum of $\mathrm{ar}^{2}, \mathrm{ar}^{4}, \mathrm{ar}^{6}, \ldots$ is :