7.Binomial Theorem
hard

Let ${\left( {x + 10} \right)^{50}} + {\left( {x - 10} \right)^{50}} = {a_0} + {a_1}x + {a_2}{x^2} + .... + {a_{50}}{x^{50}}$ , for $x \in R$; then $\frac{{{a_2}}}{{{a_0}}}$ is equal to

A

$12.50$

B

$12$

C

$12.25$

D

$12.75$

(JEE MAIN-2019)

Solution

$(10+x)^{50}+(10-x)^{50}$

$a_{0}=\left(10^{50}\right)(2)$

$a_{2}=^{50} C_{2}(10)^{48}(2)$

$\frac{a_{2}}{a_{0}}=\frac{^{50} C_{2}(10)^{48}(2)}{10^{52}(2)}=12.25$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.