- Home
- Standard 11
- Mathematics
7.Binomial Theorem
normal
Coefficient of $t^{20}$ in the expansion of $(1 + t^2)^{10}(1 + t^{10})(1 + t^{20})$ is
A
$^{10}C_5 + 2$
B
$^{10}C_5$
C
$^{10}C_5 + 1$
D
None of these
Solution
$\left(1+\mathrm{t}^{2}\right)^{10}\left(1+\mathrm{t}^{10}+\mathrm{t}^{20}+\mathrm{t}^{30}\right)$
$ = \left( {1 + {\,^{10}}{{\rm{C}}_1}{{\rm{t}}^2} + {\,^{10}}{{\rm{C}}_2}{{\rm{t}}^4} + \ldots . + {\,^{10}}{{\rm{C}}_{10}}{{\rm{t}}^{20}}} \right)$
$\left( {1 + {t^{10}} + {t^{20}} + {t^{30}}} \right)$
$\therefore $ Coefficient $ = {\,^{10}}{{\rm{C}}_{10}} + {\,^{10}}{{\rm{C}}_5} + {\,^{10}}{{\rm{C}}_0} = 2 + {\,^{10}}{{\rm{C}}_5}$
Standard 11
Mathematics