Gujarati
Hindi
7.Binomial Theorem
normal

Coefficient of $t^{20}$ in the expansion of $(1 + t^2)^{10}(1 + t^{10})(1 + t^{20})$ is

A

$^{10}C_5 + 2$

B

$^{10}C_5$

C

$^{10}C_5 + 1$

D

None of these

Solution

$\left(1+\mathrm{t}^{2}\right)^{10}\left(1+\mathrm{t}^{10}+\mathrm{t}^{20}+\mathrm{t}^{30}\right)$

$ = \left( {1 + {\,^{10}}{{\rm{C}}_1}{{\rm{t}}^2} + {\,^{10}}{{\rm{C}}_2}{{\rm{t}}^4} +  \ldots . + {\,^{10}}{{\rm{C}}_{10}}{{\rm{t}}^{20}}} \right)$

$\left( {1 + {t^{10}} + {t^{20}} + {t^{30}}} \right)$

$\therefore $ Coefficient $ = {\,^{10}}{{\rm{C}}_{10}} + {\,^{10}}{{\rm{C}}_5} + {\,^{10}}{{\rm{C}}_0} = 2 + {\,^{10}}{{\rm{C}}_5}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.