- Home
- Standard 11
- Mathematics
4-1.Complex numbers
medium
Let $z_{1}=2-i, z_{2}=-2+i .$ Find
$ \operatorname{Im}\left(\frac{1}{z_{1} \bar{z}_{1}}\right)$
A
$0$
B
$0$
C
$0$
D
$0$
Solution
$z_{1}=2-i, z_{2}=-2+i$
$\frac{1}{z_{1} \bar{z}_{1}}=\frac{1}{(2-i)(2+i)}=\frac{1}{(2)^{2}+(1)^{2}}=\frac{1}{5}$
On comparing imaginary parts, we obtain
$\operatorname{Im}\left(\frac{1}{z_{1} \bar{z}_{1}}\right)=0$
Standard 11
Mathematics