4-1.Complex numbers
medium

Let $z_{1}=2-i, z_{2}=-2+i .$ Find

$ \operatorname{Im}\left(\frac{1}{z_{1} \bar{z}_{1}}\right)$

A

$0$

B

$0$

C

$0$

D

$0$

Solution

$z_{1}=2-i, z_{2}=-2+i$

$\frac{1}{z_{1} \bar{z}_{1}}=\frac{1}{(2-i)(2+i)}=\frac{1}{(2)^{2}+(1)^{2}}=\frac{1}{5}$

On comparing imaginary parts, we obtain

$\operatorname{Im}\left(\frac{1}{z_{1} \bar{z}_{1}}\right)=0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.