- Home
- Standard 11
- Mathematics
2.Relations and Functions
easy
Let $R$ be a relation from $Q$ to $Q$ defined by $R=\{(a, b): a, b \in Q$ and $a-b \in Z \} .$ Show that
$(a, b) \in R$ and $(b, c) \in R$ implies that $(a, c) \in R$
Option A
Option B
Option C
Option D
Solution
$(a, b)$ and $(b, c) \in R$ implies that $a-b \in Z . b-c \in Z .$ So, $a-c=(a-b)+(b-c) \in Z .$ Therefore, $(a, c) \in R$
Standard 11
Mathematics