2.Relations and Functions
easy

Let $R$ be a relation from $Q$ to $Q$ defined by $R=\{(a, b): a, b \in Q$ and $a-b \in Z \} .$ Show that

$(a, b) \in R$ and $(b, c) \in R$ implies that $(a, c) \in R$

Option A
Option B
Option C
Option D

Solution

$(a, b)$ and $(b, c) \in R$ implies that $a-b \in Z . b-c \in Z .$ So, $a-c=(a-b)+(b-c) \in Z .$ Therefore, $(a, c) \in R$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.