3 and 4 .Determinants and Matrices
hard

माना $A =\left(\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)$ तथा $B =7 A ^{20}-20 A ^{7}+2 I$ हैं. जहाँ $I , 3 \times 3$ कोटि का तत्समक आव्यूह है। यदि $B =\left[ b _{ ij }\right]$, तो $b _{13}$ बराबर है 

A

$810$

B

$910$

C

$485$

D

$353$

(JEE MAIN-2021)

Solution

Let $A=\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)=1+C$

Where $I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), C=\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0\end{array}\right)$

$C^{2}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

$C^{3}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), C^{4}=C^{5}=\ldots .$

$B=7 A^{20}-20 A^{7}+2 I$

$=7(1+c)^{20}-20(1+C)^{7}+2 I$

So

$\mathrm{B} 13=7 \times{ }^{20} \mathrm{C}_{2}-20 \times{ }^{7} \mathrm{C}_{2}=910$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.