Let $S=\left\{\theta \in[-\pi, \pi]-\left\{\pm \frac{\pi}{2}\right\}: \sin \theta \tan \theta+\tan \theta=\sin 2 \theta\right\} \text {. }$ If $T =\sum_{\theta \in S } \cos 2 \theta$, then $T + n ( S )$ is equal
$7+\sqrt{3}$
$9$
$8+\sqrt{3}$
$10$
The general solution of $sin\, x + sin \,5x = sin\, 2x + sin \,4x$ is :
The solution of $tan\,\, 2\theta\,\, tan\theta = 1$ is
No. of solution of equation $sin^{65}x\, -\, cos^{65}x =\, -1$ is, if $x \in (-\pi , \pi )$
If $\sqrt{3}\left(\cos ^{2} x\right)=(\sqrt{3}-1) \cos x+1,$ the number of solutions of the given equation when $x \in\left[0, \frac{\pi}{2}\right]$ is
One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval