The general value $\theta $ is obtained from the equation $\cos 2\theta = \sin \alpha ,$ is
$2\theta = \frac{\pi }{2} - \alpha $
$\theta = 2n\pi \pm \left( {\frac{\pi }{2} - \alpha } \right)$
$\theta = \frac{{n\pi + {{( - 1)}^n}\alpha }}{2}$
$\theta = n\pi \pm \left( {\frac{\pi }{4} - \frac{\alpha }{2}} \right)$
Let $S$ be the sum of all solutions (in radians) of the equation $\sin ^{4} \theta+\cos ^{4} \theta-\sin \theta \cos \theta=0$ in $[0,4 \pi]$ Then $\frac{8 \mathrm{~S}}{\pi}$ is equal to ...... .
If the equation $2tan\ x \ sin\ x -2 tan\ x + cos\ x = 0$ has $k$ solutions in $[0,k \pi]$, then number of integral values of $k$ is-
Let $S\, = \,\left\{ {\theta \, \in \,[ - \,2\,\pi ,\,\,2\,\pi ]\, :\,2\,{{\cos }^2}\,\theta \, + \,3\,\sin \,\theta \, = \,0} \right\}$. Then the sum of the elements of $S$ is
If $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$, then the general value of $\theta $ is
If $2{\sin ^2}\theta = 3\cos \theta ,$ where $0 \le \theta \le 2\pi $, then $\theta = $