The general value $\theta $ is obtained from the equation $\cos 2\theta = \sin \alpha ,$ is

  • A

    $2\theta = \frac{\pi }{2} - \alpha $

  • B

    $\theta = 2n\pi \pm \left( {\frac{\pi }{2} - \alpha } \right)$

  • C

    $\theta = \frac{{n\pi + {{( - 1)}^n}\alpha }}{2}$

  • D

    $\theta = n\pi \pm \left( {\frac{\pi }{4} - \frac{\alpha }{2}} \right)$

Similar Questions

Let $S$ be the sum of all solutions (in radians) of the equation $\sin ^{4} \theta+\cos ^{4} \theta-\sin \theta \cos \theta=0$ in $[0,4 \pi]$ Then $\frac{8 \mathrm{~S}}{\pi}$ is equal to ...... .

  • [JEE MAIN 2021]

If the equation $2tan\ x \ sin\ x -2 tan\ x + cos\ x = 0$ has $k$ solutions in $[0,k \pi]$, then number of integral values of $k$ is-

Let $S\, = \,\left\{ {\theta \, \in \,[ - \,2\,\pi ,\,\,2\,\pi ]\,  :\,2\,{{\cos }^2}\,\theta \, + \,3\,\sin \,\theta \, = \,0} \right\}$. Then the sum of the elements of $S$ is

  • [JEE MAIN 2019]

If $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$, then the general value of $\theta $ is

If $2{\sin ^2}\theta = 3\cos \theta ,$ where $0 \le \theta \le 2\pi $, then $\theta = $

  • [IIT 1963]