3 and 4 .Determinants and Matrices
medium

Let $A$ and $B$ be any two $3 \times 3$ symmetric and skew symmetric matrices respectively. Then which of the following is $NOT$ true?

A

$A ^{4}- B ^{4}$ is a symmetric matrix

B

$AB - BA$ is a symmetric matrix

C

$B ^{5}- A ^{5}$ is a skew-symmetric matrix

D

$AB + BA$ is a skew-symmetric matrix

(JEE MAIN-2022)

Solution

Given that $A^{T}=A, B^{T}=-B$

$C =A^{4}-B^{4}$

$C^{ T }=\left( A ^{4}- B ^{4}\right)=\left( A ^{4}\right)^{ T }-\left( B ^{4}\right)^{ T }= A ^{4}- B ^{4}= C$

$C = AB – BA$

$C ^{ T }=( AB – BA )^{ T }=( AB )^{ T }-( BA )^{ T }$

$= B ^{ T } A ^{ T }- A ^{ T } B ^{ T }=- BA + AB = C$

$C = B ^{5}- A ^{5}$

$C ^{ T }=\left( B ^{5}- A ^{5}\right)^{ T }=\left( B ^{ S }\right)^{ T }-\left( A ^{5}\right)^{ T }=- B ^{5}- A ^{5}$

$C = AB + BA$

$C ^{ T }=( AB + BA )^{ T }=( AB )^{ T }+( BA )^{ T }$

$=- BA – AB =- C$

$\therefore \text { Option } C \text { is not true. }$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.