Let $M=2^{30}-2^{15}+1$, and $M^2$ be expressed in base $2$.The number of $1$'s in this base $2$ representation of $M^2$ is
$29$
$30$
$59$
$60$
Suppose the sides of a triangle form a geometric progression with common ratio $r$. Then, $r$ lies in the interval
Let $\left\{a_k\right\}$ and $\left\{b_k\right\}, k \in N$, be two G.P.s with common ratio $r_1$ and $r_2$ respectively such that $a_1=b_1=4$ and $r_1 < r_2$. Let $c_k=a_k+k, \in N$. If $c_2=5$ and $c_3=13 / 4$ then $\sum \limits_{k=1}^{\infty} c_k - \left(12 a _6+8 b _4\right)$ is equal to
Suppose that the sides $a,b, c$ of a triangle $A B C$ satisfy $b^2=a c$. Then the set of all possible values of $\frac{\sin A \cot C+\cos A}{\sin B \cot C+\cos B}$ is
Let $\alpha$ and $\beta$ be the roots of $x^{2}-3 x+p=0$ and $\gamma$ and $\delta$ be the roots of $x^{2}-6 x+q=0 .$ If $\alpha$ $\beta, \gamma, \delta$ form a geometric progression. Then ratio $(2 q+p):(2 q-p)$ is
The geometric series $a + ar + ar^2 + ar^3 +..... \infty$ has sum $7$ and the terms involving odd powers of $r$ has sum $'3'$, then the value of $(a^2 -r^2)$ is -