- Home
- Standard 11
- Mathematics
8. Sequences and Series
normal
Let $M=2^{30}-2^{15}+1$, and $M^2$ be expressed in base $2$.The number of $1$'s in this base $2$ representation of $M^2$ is
A
$29$
B
$30$
C
$59$
D
$60$
(KVPY-2020)
Solution
(b)
Given,
$\begin{aligned} M^2=& 2^{66}-2^{46}+2^{32}+2^{30}-2^{16}+1 \\ M^2=& 2^{46}\left[\frac{2^{14}-1}{2-1}\right]+2^{32}+2^{16}\left[\frac{2^{14}-1}{2-1}\right]+1 \\ M^2=& 2^{46}\left[1+2+2^2+\ldots+2^{13}\right] \\ & \quad+2^{32}+2^{16}\left[1+2+2^2+\ldots+2^{13}\right]+1 \\ M^2=& \frac{2^{59}+2^{58}+\ldots+2^{46}}{14 \text { terms }}+2^{32} \end{aligned}$
$\underbrace{+2^{29}+2^{28}+\ldots+2^{16}}_{14 \text { terms }}+2^0$
Therefore, on base $2$ representation of $M^2$, there will be $30$ times digit $1$ .
Standard 11
Mathematics