Let $M=2^{30}-2^{15}+1$, and $M^2$ be expressed in base $2$.The number of $1$'s in this base $2$ representation of $M^2$ is

  • [KVPY 2020]
  • A

    $29$

  • B

    $30$

  • C

    $59$

  • D

    $60$

Similar Questions

The interior angle of a $'n$' sided convex polygon are in $G.P$.. The smallest angle is $1^o $ and common ratio is $2^o $ then number of possible values of $'n'$ is

If the $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of a $G.P.$ are $a, b$ and $c,$ respectively. Prove that

$a^{q-r} b^{r-p} c^{p-q}=1$

Find the sum of the following series up to n terms:

$6+.66+.666+\ldots$

If $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0),$ then show that $a, b, c$ and $d$ are in $G.P.$

If $a, b, c, d$ and $p$ are different real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right)\, \leq \,0,$ then show that $a, b, c$ and $d$ are in $G.P.$