- Home
- Standard 11
- Mathematics
Let $P(x)=1+x+x^2+x^3+x^4+x^5$. What is the remainder when $P\left(x^{12}\right)$ is divided by $P(x)$ ?
$0$
$6$
$1+x$
$1+x+x^2+x^3+x^4$
Solution
(b)
We have,
$P(x)=1+x+x^2+x^3+x^4+x^5$
$P(x)=\frac{1-x^6}{1-x}$
${\left[\because a+a r+a r^2+\ldots+a r^n=\frac{a\left(-r^n\right)}{1-r}\right]}$
It has $5$ roots let $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ they are $6$ th roots of unity
Now,
$P\left(x^{12}\right)=1+x^{12}+x^{24}+x^{36}+x^{48}+x^{60}$
$\therefore P\left(x^{12}\right) =P(x) \cdot Q(x)+R(x)$
Here, $R(x)$ is a polynomial of maximum degree $4 .$
Put $x=\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$; we get
$R\left(\alpha_1\right)=6=R\left(\alpha_2\right) =R\left(\alpha_3\right)$
$=R\left(\alpha_4\right)=R\left(\alpha_5\right)$
$\therefore R(x)-6=0$ has 6 roots, which contradicts that $R(x)$ is maximum of degree $4 .$
$\therefore$ So it is an identity.
$\because \quad R(x)=6$